VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Dr. Jim Graham and Chris Muhl Humboldt State University, 2014

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT Of GEOSPATIAL ANALYSIS

The Need

- Error varies greatly between projections and their settings
- Computing error in projections can be timeconsuming
- Projections can be difficult for students to appreciate

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

- Projections greatly distort area, distance, and/or shape (form)

Mercator 0 to 50 area and distance distortion

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

- The nature of distortion can be difficult to describe in text

Oblique Mercator 0 to 10 area and distance distortion

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Clipping bounds are also needed

Cassini
Soldner
Projection

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS
Previously, to Compute Area Distortion

- Create "Fishnet" of polygons
- Project to equal-area projection
- Compute "Exact" areas
- Project to desired projection
- Compute projected areas
- Divide the exact by projected area values
$-<1$: area was made much smaller than expected
- > I: area was made larger than expected

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

Today:

- Selection

projection

- Enter desired settings
- Press "Update"
- "OK" to add layers

Projection Settings

Projector: Geotools Projector
Method: Albers Conic Equal Area

Longitude Of Origin	0	${ }^{\circ}(-180.0$ to 180.0)
Latitude Of Origin	0	${ }^{\circ}(-90.0$ to 90.0$)$
Standard Parallel 1	60	${ }^{\circ}(-90.0$ to 90.0$)$
False Easting	0	m (0.0 to 2.0E7)
False Northing	0	m (0.0 to 2.0E7)

Clipping Settings

Show: $\sqrt[\nabla]{ }$ Parallels $\sqrt{ }$ Meridians $\bar{\nabla}$ Areas Γ Angles ∇ Bounds ∇ Countries

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

Albers Equal Area Conic

Preserves Area and Form

Distorts Distance

HSU GEOSPATIAL ANALYSIS
 www．HUMBOLDT．COM • 2014

 VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

 VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS}

DR．JAMES GRAHAM \＆CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Đscenes

曰 view 53
日 $\$ 10 \mathrm{~m}$－admin－0－countries
\bigcirc Simple Painter
曰 Scene 26
日○人 Point Layer
O Simple Painter
0 Simple Painter
－$\$$ Region Layer
0 Simple Painter
$\boxminus \bigcirc$ Conformal
0.0
45.0

T \rightarrow Horiziontal Area
（1）\＆Vertical Distance
T（ ）Areas
田 $\$$ Region Layer
View 62
View 69
\boxminus Documents
䍚 Document 1
Tables（dev）
TSymbology

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

The Approach

- BlueSpray
- Created by SchoonerTurtles, Inc.
- Provided free under a beta testing agreement
- GDAL, GeoTools
- Open source projection engines
- Also:
- Java from Oracle
- Java Topology Suite
- NetBeans
- Create grid of points along lines of latitude and longitude (parallels and meridians)

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

- Compute:
- Great circle area
- Great circle distances (along meridians and parallels)
- Angles are at intersections are 90 degrees except for the poles

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

- Project the grid of points to desired projection

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GGOSPATIAL ANALYSIS

- Compute area of "cells" between points
- Divide by expected area
- Compute the length of each line segment
- Divide by expected length

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

- Compute the average change in angle at each point
- Sum the angle between all the line segments at each point
- Divide by the number of angles to find the average angle
- Divide by expected value of 90 dgreees

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GGOSPATIAL ANALYSIS

Finding the bounds

- Start at the center $(0,0)$
- Moving left and right two cells then up and down one cell:
- Add cells that are within the specified tolerances
- Check for overlapping points
- Check for intersecting lines

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Adding "Cells"

Assumed the first four cells were within tolerances

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Adding "Cells"

1			3
2			4

Add cells to left and right that are within tolerance

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Adding "Cells"

5	1			3	7
6	2			4	8

Add additional cells to the left and right since the world is twice as wide as it is call (with Geographic data)

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Adding "Cells"

11	10	9	12	13	14
5	1			3	7
6	2			4	8
17	16	15	18	19	20

Add cells along the top and bottom.
Keep repeating the cycle until no more cells are added

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

Disallow Intersections and Overlaps

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Limit Distortion

0 to $2 x$ on area and distance

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Details

- Accessing vector data from an applet - Used BlueSprays "stx" format
- Java Topology Suite is very picky
- Projected Systems can extend beyond +-I80 to +-90 degrees
- Used a $360 * 3$, $180 * 3$ sized grid for analysis

Available At:

- Applet:
- HSU Geospatial Web Site
- www.humboldt.edu/gsp -> Links
- BlueSpray:
- SchoonerTurtles web site:
- www.schoonerturtles.com

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Future Steps

- Add the ability to project from any layer - Not just the globe
- Finish projection engine within BlueSpray
- Uses the Projection Explorer to set the bounds

VISUALIZATIONS OF UNCERTAINTY IN PROJECTIONS

DR. JAMES GRAHAM \& CHRIS MUHL • HUMBOLDT STATE UNIVERSITY • DEPARTMENT OF GEOSPATIAL ANALYSIS

Acknowledgments

- Jake Nelson, Dr. Bernhard Jenny at Oregon State University
- Nick Ramirez at Humboldt State University
- Greg Newman at Colorado State University
- All the folks that support open source GIS software: GDAL, GeoTools, Proj4, JTS, NetBeans, etc.

Projection Settings

Projector: Geotools Projector
Method: Lambert Azimuthal Equal Area

Projected View

Show: $\sqrt{ }$ Parallels ∇ Meridians ∇ Areas ∇ Angles ∇ Bounds \bar{V} Countries

